Students of a school are standing in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in figure. Is it possible to place Jaspal in the drill in such a way that he is equidistant from each of the four students A, B, C and D? If so, what should be his position?
If the points A (1, –2), B (2, 3) C (a, 2) and D (– 4, –3) form a parallelogram, find the value of a and height of the parallelogram taking AB as base.
The points A (x1, y1), B (x2, y2) and C (x3 y3) are the vertices of ∆ ABC.
(i) The median from A meets BC at D. Find the coordinates of the point D.
(ii) Find the coordinates of the point P on AD such that AP : PD = 2 : 1
(iii) Find the coordinates of points Q and R on medians BE and CF, respectively such that BQ : QE = 2 : 1 and CR : RF = 2 : 1
(iv) What are the coordinates of the centroid of the triangle ABC?
A (6, 1), B (8, 2) and C (9, 4) are three vertices of a parallelogram ABCD. If E is the midpoint of DC, find the area of ∆ ADE.
If (– 4, 3) and (4, 3) are two vertices of an equilateral triangle, find the coordinates of the third vertex, given that the origin lies in the interior of the triangle.
The mid-points D, E, F of the sides of a triangle ABC are (3, 4), (8, 9) and (6, 7). Find the coordinates of the vertices of the triangle.
Find the ratio in which the line 2x + 3y – 5 = 0 divides the line segment joining the points (8, –9) and (2, 1). Also find the coordinates of the point of division.
Find the values of k if the points A (k + 1, 2k), B (3k, 2k + 3) and C (5k – 1, 5k) are collinear.
Find the coordinates of the point R on the line segment joining the points P (–1, 3) and Q (2, 5) such that PR = 3/5 PQ.